Contents

Preface xxi

Preface to the First Edition xxiii

Introduction 1

Part 1 Nuclear Magnetism 3

1 Matter 5

1.1 Atoms and Nuclei 5
1.2 Spin 5
1.2.1 Classical angular momentum 6
1.2.2 Quantum angular momentum 6
1.2.3 Spin angular momentum 7
1.2.4 Combining angular momenta 8
1.2.5 The Pauli Principle 9
1.3 Nuclei 9
1.3.1 The fundamental particles 9
1.3.2 Neutrons and protons 10
1.3.3 Isotopes 11
1.4 Nuclear Spin 12
1.4.1 Nuclear spin states 12
1.4.2 Nuclear Zeeman splitting 14
1.4.3 Zero-spin nuclei 14
1.4.4 Spin-1/2 nuclei 15
1.4.5 Quadrupolar nuclei with integer spin 15
1.4.6 Quadrupolar nuclei with half-integer spin 15
1.5 Atomic and Molecular Structure 15
1.5.1 Atoms 15
1.5.2 Molecules 16
1.6 States of Matter 17
1.6.1 Gases 17
1.6.2 Liquids 17
1.6.3 Solids 19
Contents

Part 1 Magnetism

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The Electromagnetic Field</td>
<td>23</td>
</tr>
<tr>
<td>2.2</td>
<td>Macroscopic Magnetism</td>
<td>23</td>
</tr>
<tr>
<td>2.3</td>
<td>Microscopic Magnetism</td>
<td>25</td>
</tr>
<tr>
<td>2.4</td>
<td>Spin Precession</td>
<td>26</td>
</tr>
<tr>
<td>2.5</td>
<td>Larmor Frequency</td>
<td>29</td>
</tr>
<tr>
<td>2.6</td>
<td>Spin–Lattice Relaxation: Nuclear Paramagnetism</td>
<td>30</td>
</tr>
<tr>
<td>2.7</td>
<td>Transverse Magnetization and Transverse Relaxation</td>
<td>33</td>
</tr>
<tr>
<td>2.8</td>
<td>NMR Signal</td>
<td>36</td>
</tr>
<tr>
<td>2.9</td>
<td>Electronic Magnetism</td>
<td>36</td>
</tr>
</tbody>
</table>

Part 2 NMR Spectroscopy

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>A Simple Pulse Sequence</td>
<td>39</td>
</tr>
<tr>
<td>3.2</td>
<td>A Simple Spectrum</td>
<td>39</td>
</tr>
<tr>
<td>3.3</td>
<td>Isotopemeric Spectra</td>
<td>42</td>
</tr>
<tr>
<td>3.4</td>
<td>Relative Spectral Frequencies: Case of Positive Gyromagnetic Ratio</td>
<td>44</td>
</tr>
<tr>
<td>3.5</td>
<td>Relative Spectral Frequencies: Case of Negative Gyromagnetic Ratio</td>
<td>46</td>
</tr>
<tr>
<td>3.6</td>
<td>Inhomogeneous Broadening</td>
<td>48</td>
</tr>
<tr>
<td>3.7</td>
<td>Chemical Shifts</td>
<td>50</td>
</tr>
<tr>
<td>3.8</td>
<td>J-Coupling Multiplets</td>
<td>56</td>
</tr>
<tr>
<td>3.9</td>
<td>Heteronuclear Decoupling</td>
<td>59</td>
</tr>
</tbody>
</table>

Part 2 The NMR Experiment

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>The Magnet</td>
<td>65</td>
</tr>
<tr>
<td>4.2</td>
<td>The Transmitter Section</td>
<td>66</td>
</tr>
<tr>
<td>4.2.1</td>
<td>The synthesizer: radio-frequency phase shifts</td>
<td>67</td>
</tr>
<tr>
<td>4.2.2</td>
<td>The pulse gate: radio-frequency pulses</td>
<td>68</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Radio-frequency amplifier</td>
<td>69</td>
</tr>
<tr>
<td>4.3</td>
<td>The Duplexer</td>
<td>69</td>
</tr>
<tr>
<td>4.4</td>
<td>The Probe</td>
<td>70</td>
</tr>
<tr>
<td>4.5</td>
<td>The Receiver Section</td>
<td>72</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Signal preamplifier</td>
<td>73</td>
</tr>
<tr>
<td>4.5.2</td>
<td>The quadrature receiver</td>
<td>73</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Analogue–digital conversion</td>
<td>74</td>
</tr>
<tr>
<td>4.5.4</td>
<td>Signal phase shifting</td>
<td>76</td>
</tr>
<tr>
<td>4.6</td>
<td>Overview of the Radio-Frequency Section</td>
<td>76</td>
</tr>
<tr>
<td>4.7</td>
<td>Pulsed Field Gradients</td>
<td>77</td>
</tr>
<tr>
<td>4.7.1</td>
<td>Magnetic field gradients</td>
<td>78</td>
</tr>
<tr>
<td>4.7.2</td>
<td>Field gradient coils</td>
<td>79</td>
</tr>
<tr>
<td>4.7.3</td>
<td>Field gradient control</td>
<td>80</td>
</tr>
</tbody>
</table>
5 Fourier Transform NMR

- 5.1 A Single-Pulse Experiment 85
- 5.2 Signal Averaging 86
- 5.3 Multiple-pulse Experiments: Phase Cycling 89
- 5.4 Heteronuclear Experiments 90
- 5.5 Pulsed Field Gradient Sequences 91
- 5.6 Arrayed Experiments 91
- 5.7 NMR Signal 93
- 5.8 NMR Spectrum 96
 - 5.8.1 Fourier transformation 96
 - 5.8.2 Lorentzians 96
 - 5.8.3 Explanation of Fourier transformation 100
 - 5.8.4 Spectral phase shifts 102
 - 5.8.5 Frequency-dependent phase correction 103
- 5.9 Two-dimensional Spectroscopy 105
 - 5.9.1 Two-dimensional signal surface 105
 - 5.9.2 Two-dimensional Fourier transformation 105
 - 5.9.3 Phase twist peaks 107
 - 5.9.4 Pure absorption two-dimensional spectra 109
- 5.10 Three-dimensional Spectroscopy 114

Part 3 Quantum Mechanics

6 Mathematical Techniques

- 6.1 Functions 121
 - 6.1.1 Continuous functions 121
 - 6.1.2 Normalization 122
 - 6.1.3 Orthogonal and orthonormal functions 122
 - 6.1.4 Dirac notation 122
 - 6.1.5 Vector representation of functions 123
- 6.2 Operators 125
 - 6.2.1 Commutation 126
 - 6.2.2 Matrix representations 126
 - 6.2.3 Diagonal matrices 129
 - 6.2.4 Block diagonal matrices 129
 - 6.2.5 Inverse 130
 - 6.2.6 Adjoint 130
 - 6.2.7 Hermitian operators 131
 - 6.2.8 Unitary operators 131
- 6.3 Eigenfunctions, Eigenvalues and Eigenvectors 131
 - 6.3.1 Eigenequations 131
 - 6.3.2 Degeneracy 131
 - 6.3.3 Eigenfunctions and eigenvalues of Hermitian operators 132
 - 6.3.4 Eigenfunctions of commuting operators: non-degenerate case 132
 - 6.3.5 Eigenfunctions of commuting operators: degenerate case 132
 - 6.3.6 Eigenfunctions of commuting operators: summary 133
 - 6.3.7 Eigenvectors 134
6.4 Diagonalization

6.4.1 Diagonalization of Hermitian or unitary matrices 135

6.5 Exponential Operators

6.5.1 Powers of operators 135
6.5.2 Exponentials of operators 136
6.5.3 Exponentials of unity and null operators 136
6.5.4 Products of exponential operators 137
6.5.5 Inverses of exponential operators 137
6.5.6 Complex exponentials of operators 137
6.5.7 Exponentials of small operators 137
6.5.8 Matrix representations of exponential operators 138

6.6 Cyclic Commutation

6.6.1 Definition of cyclic commutation 138
6.6.2 Sandwich formula 139

7 Review of Quantum Mechanics

7.1 Spinless Quantum Mechanics 143

7.1.1 The state of the particle 143
7.1.2 The equation of motion 144
7.1.3 Experimental observations 144

7.2 Energy Levels 145

7.3 Natural Units 146

7.4 Superposition States and Stationary States 147

7.5 Conservation Laws 148

7.6 Angular Momentum

7.6.1 Angular momentum operators 149
7.6.2 Rotation operators 149
7.6.3 Rotation sandwiches 151
7.6.4 Angular momentum eigenspaces and eigenvalues 152
7.6.5 The angular momentum eigenspaces 154
7.6.6 Shift operators 154
7.6.7 Matrix representations of the angular momentum operators 156

7.7 Spin 157

7.7.1 Spin angular momentum operators 157
7.7.2 Spin rotation operators 158
7.7.3 Spin Zeeman basis 158
7.7.4 Trace 159

7.8 Spin-1/2 160

7.8.1 Zeeman eigenstates 160
7.8.2 Angular momentum operators 160
7.8.3 Spin-1/2 rotation operators 160
7.8.4 Unity operator 161
7.8.5 Shift operators 161
7.8.6 Projection operators 161
7.8.7 Ket-bra notation 162

7.9 Higher Spin 162

7.9.1 Spin $I = 1$ 163
7.9.2 Spin $I = 3/2$ 164
7.9.3 Higher spins 165
Part 4 Nuclear Spin Interactions

8 Nuclear Spin Hamiltonian

8.1 Spin Hamiltonian Hypothesis

8.2 Electromagnetic Interactions

8.2.1 Electric spin Hamiltonian

8.2.2 Magnetic spin interactions

8.3 External and Internal Spin Interactions

8.3.1 Spin interactions: summary

8.4 External Magnetic Fields

8.4.1 Static field

8.4.2 Radio-frequency field

8.4.3 Gradient field

8.4.4 External spin interactions: summary

8.5 Internal Spin Hamiltonian

8.5.1 The internal spin interactions

8.5.2 Simplification of the internal Hamiltonian

8.6 Motional Averaging

8.6.1 Modes of molecular motion

8.6.2 Molecular rotations

8.6.3 Molecular translations

8.6.4 Intramolecular and intermolecular spin interactions

8.6.5 Summary of motional averaging

9 Internal Spin Interactions

9.1 Chemical Shift

9.1.1 Chemical shift tensor

9.1.2 Principal axes

9.1.3 Principal values

9.1.4 Isotropic chemical shift

9.1.5 Chemical shift anisotropy (CSA)

9.1.6 Chemical shift for an arbitrary molecular orientation

9.1.7 Chemical shift frequency

9.1.8 Chemical shift interaction in isotropic liquids

9.1.9 Chemical shift interaction in anisotropic liquids

9.1.10 Chemical shift interaction in solids

9.1.11 Chemical shift interaction: summary

9.2 Electric Quadrupole Coupling

9.2.1 Electric field gradient tensor

9.2.2 Nuclear quadrupole Hamiltonian

9.2.3 Isotropic liquids

9.2.4 Anisotropic liquids

9.2.5 Solids

9.2.6 Quadrupole interaction: summary

9.3 Direct Dipole-Dipole Coupling

9.3.1 Secular dipole-dipole coupling

9.3.2 Dipole-dipole coupling in isotropic liquids
Contents

11.5 Magnetization Vector 269
11.6 Strong Radio-frequency Pulse 270
 11.6.1 Excitation of coherence 271
 11.6.2 Population inversion 273
 11.6.3 Cycle of states 274
 11.6.4 Stimulated absorption and emission 275
11.7 Free Precession Without Relaxation 276
11.8 Operator Transformations 279
 11.8.1 Pulse of phase $\phi_p = 0$ 279
 11.8.2 Pulse of phase $\phi_p = \pi/2$ 279
 11.8.3 Pulse of phase $\phi_p = \pi$ 279
 11.8.4 Pulse of phase $\phi_p = 3\pi/2$ 279
 11.8.5 Pulse of general phase ϕ_p 280
 11.8.6 Free precession for an interval τ 280
11.9 Free Evolution with Relaxation 281
 11.9.1 Transverse relaxation 281
 11.9.2 Longitudinal relaxation 283
11.10 Magnetization Vector Trajectories 285
11.11 NMR Signal and NMR Spectrum 287
11.12 Single-pulse Spectra 289

12 Experiments on Non-interacting Spins-1/2 295
 12.1 Inversion Recovery: Measurement of T_1 295
 12.2 Spin Echoes: Measurement of T_2 298
 12.2.1 Homogeneous and inhomogeneous broadening 298
 12.2.2 Inhomogeneous broadening in the time domain 299
 12.2.3 Spin echo pulse sequence 299
 12.2.4 Refocusing 302
 12.2.5 Coherence interpretation 303
 12.2.6 Coherence transfer pathway 305
 12.3 Spin Locking: Measurement of $T_{1\rho}$ 305
 12.4 Gradient Echoes 306
 12.5 Slice Selection 307
 12.6 NMR Imaging 309

13 Quadrupolar Nuclei 319
 13.1 Spin $I = 1$ 319
 13.1.1 Spin-1 states 319
 13.1.2 Spin-1 energy levels 320
 13.1.3 Spin-1 density matrix 321
 13.1.4 Coherence evolution 323
 13.1.5 Observable coherences and NMR spectrum 325
 13.1.6 Thermal equilibrium 326
 13.1.7 Strong radio-frequency pulse 326
 13.1.8 Excitation of coherence 328
 13.1.9 NMR spectrum 328
 13.1.10 Quadrupolar echo 331
13.2 Spin $I = 3/2$ 334
13.2.1 Spin-3/2 energy levels 335
13.2.2 Populations and coherences 336
13.2.3 NMR signal 338
13.2.4 Single pulse spectrum 339
13.2.5 Spin-3/2 spectra for small quadrupole couplings 341
13.2.6 Second-order quadrupole couplings 342
13.2.7 Central transition excitation 343
13.2.8 Central transition echo 345
13.3 Spin $I = 5/2$ 345
13.4 Spins $I = 7/2$ 349
13.5 Spins $I = 9/2$ 350

Part 6 Coupled Spins 353

14 Spin-1/2 Pairs 355
14.1 Coupling Regimes 355
14.2 Zeeman Product States and Superposition States 356
14.3 Spin-pair Hamiltonian 357
14.4 Pairs of Magnetically Equivalent Spins 359
14.4.1 Singlets and triplets 359
14.4.2 Energy levels 360
14.4.3 NMR spectra 362
14.4.4 Dipolar echo 363
14.5 Weakly Coupled Spin Pairs 363
14.5.1 Weak coupling 363
14.5.2 AX spin systems 364
14.5.3 Energy levels 364
14.5.4 AX spectrum 365
14.5.5 Heteronuclear spin pairs 366

15 Homonuclear AX System 369
15.1 Eigenstates and Energy Levels 369
15.2 Density Operator 370
15.3 Rotating Frame 375
15.4 Free Evolution 376
15.4.1 Evolution of a spin pair 376
15.4.2 Evolution of the coherences 377
15.5 Spectrum of the AX System: Spin-Spin Splitting 378
15.6 Product Operators 381
15.6.1 Construction of product operators 382
15.6.2 Populations and coherences 383
15.6.3 Spin orientations 387
15.7 Thermal Equilibrium 389
15.8 Radio-frequency Pulses 391
15.8.1 Rotations of a single spin pair 392
15.8.2 Rotations of the spin density operator 393
Contents

15.8.3 Operator transformations 395
15.9 Free Evolution of the Product Operators 397
15.9.1 Chemical shift evolution 399
15.9.2 J-coupling evolution 400
15.9.3 Relaxation 405
15.10 Spin Echo Sandwich 405

16 Experiments on AX Systems 409

16.1 COSY
16.1.1 The assignment problem 409
16.1.2 COSY pulse sequence 411
16.1.3 Theory of COSY: coherence interpretation 411
16.1.4 Product operator interpretation 415
16.1.5 Experimental examples 418

16.2 INADEQUATE
16.2.1 13C isotopomers 418
16.2.2 Pulse sequence 423
16.2.3 Theory of INADEQUATE 424
16.2.4 Coherence transfer pathways and phase cycling 429
16.2.5 Two-dimensional INADEQUATE 431

16.3 INEPT
16.3.1 The sensitivity of nuclear isotopes 436
16.3.2 INEPT pulse sequence 437
16.3.3 Refocused INEPT 440

16.4 Residual Dipolar Couplings 443
16.4.1 Angular information 443
16.4.2 Spin Hamiltonian 443
16.4.3 Bicelles orienting media 444
16.4.4 Doublet splittings 446

17 Many-spin Systems 453

17.1 Molecular Spin System 453
17.2 Spin Ensemble 454
17.3 Motionally Suppressed J-Couplings 454
17.4 Chemical Equivalence 455
17.5 Magnetic Equivalence 458
17.6 Weak Coupling 461
17.7 Heteronuclear Spin Systems 462
17.8 Alphabet Notation 463
17.9 Spin Coupling Topologies 464

18 Many-spin Dynamics 467

18.1 Spin Hamiltonian 467
18.2 Energy Eigenstates 468
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.3 Superposition States</td>
<td>469</td>
</tr>
<tr>
<td>18.4 Spin Density Operator</td>
<td>470</td>
</tr>
<tr>
<td>18.5 Populations and Coherences</td>
<td>471</td>
</tr>
<tr>
<td>18.5.1 Coherence orders</td>
<td>471</td>
</tr>
<tr>
<td>18.5.2 Combination coherences and simple coherences</td>
<td>471</td>
</tr>
<tr>
<td>18.5.3 Coherence frequencies</td>
<td>472</td>
</tr>
<tr>
<td>18.5.4 Degenerate coherences</td>
<td>473</td>
</tr>
<tr>
<td>18.5.5 Observable coherences</td>
<td>473</td>
</tr>
<tr>
<td>18.6 NMR Spectra</td>
<td>475</td>
</tr>
<tr>
<td>18.7 Many-spin Product Operators</td>
<td>477</td>
</tr>
<tr>
<td>18.7.1 Construction of product operators</td>
<td>477</td>
</tr>
<tr>
<td>18.7.2 Populations and coherences</td>
<td>478</td>
</tr>
<tr>
<td>18.7.3 Physical interpretation of product operators</td>
<td>480</td>
</tr>
<tr>
<td>18.8 Thermal Equilibrium</td>
<td>481</td>
</tr>
<tr>
<td>18.9 Radio-frequency Pulses</td>
<td>481</td>
</tr>
<tr>
<td>18.10 Free Precession</td>
<td>482</td>
</tr>
<tr>
<td>18.10.1 Chemical shift evolution</td>
<td>482</td>
</tr>
<tr>
<td>18.10.2 J-coupling evolution</td>
<td>483</td>
</tr>
<tr>
<td>18.10.3 Relaxation</td>
<td>485</td>
</tr>
<tr>
<td>18.11 Spin Echo Sandwiches</td>
<td>485</td>
</tr>
<tr>
<td>18.12 INEPT in an I_2S System</td>
<td>488</td>
</tr>
<tr>
<td>18.13 COSY in Multiple-spin Systems</td>
<td>491</td>
</tr>
<tr>
<td>18.13.1 AMX spectrum</td>
<td>492</td>
</tr>
<tr>
<td>18.13.2 Active and passive spins</td>
<td>493</td>
</tr>
<tr>
<td>18.13.3 Cross-peak multiplets</td>
<td>494</td>
</tr>
<tr>
<td>18.13.4 Diagonal peaks</td>
<td>496</td>
</tr>
<tr>
<td>18.13.5 Linear spin systems</td>
<td>497</td>
</tr>
<tr>
<td>18.14 TOCSY</td>
<td>497</td>
</tr>
<tr>
<td>18.14.1 The ambiguity of COSY spectra</td>
<td>497</td>
</tr>
<tr>
<td>18.14.2 TOCSY pulse sequence</td>
<td>499</td>
</tr>
<tr>
<td>18.14.3 Theory of TOCSY</td>
<td>499</td>
</tr>
</tbody>
</table>

Part 7 Motion and Relaxation 507

19 Motion 509

19.1 Motional Processes 509
19.1.1 Molecular vibrations 509
19.1.2 Local rotations of molecular groups 510
19.1.3 Molecular flexibility 510
19.1.4 Chemical exchange 510
19.1.5 Molecular rotations 511
19.1.6 Translational motion 512
19.1.7 Mechanical motion 513
19.2 Motional Time-scales 513
19.3 Motional Effects 514
19.4 Motional Averaging 515
19.5 Motional Lineshapes and Two-site Exchange 516
Contents

19.5.1 Slow intermediate exchange and motional broadening 518
19.5.2 Fast intermediate exchange and motional narrowing 520
19.5.3 Averaging of J-splittings 523
19.5.4 Asymmetric two-site exchange 524
19.5.5 Knight shift 525
19.5.6 Paramagnetic shifts 527
19.6 Sample Spinning 527
19.7 Longitudinal Magnetization Exchange 529
19.7.1 Two-dimensional exchange spectroscopy 529
19.7.2 Theory 532
19.7.3 Motional regimes 539
19.8 Diffusion 539

20 Relaxation 543

20.1 Types of Relaxation 543
20.2 Relaxation Mechanisms 543
20.3 Random Field Relaxation 545
 20.3.1 Autocorrelation functions and correlation times 545
 20.3.2 Spectral density 548
 20.3.3 Normalized spectral density 549
 20.3.4 Transition probabilities 550
 20.3.5 Thermally corrected transition probabilities 551
 20.3.6 Spin–lattice relaxation 552
20.4 Dipole–Dipole Relaxation 556
 20.4.1 Rotational correlation time 556
 20.4.2 Transition probabilities 557
 20.4.3 Solomon equations 561
 20.4.4 Longitudinal relaxation 564
 20.4.5 Transverse relaxation 565
20.5 Steady-state Nuclear Overhauser Effect 566
20.6 NOESY 570
 20.6.1 NOESY pulse sequence 570
 20.6.2 NOESY signal 570
 20.6.3 NOESY spectra 573
 20.6.4 NOESY and chemical exchange 575
 20.6.5 Molecular structure determination 576
20.7 ROESY 577
 20.7.1 Transverse cross-relaxation 577
 20.7.2 Spin locking 578
 20.7.3 Transverse Solomon equations 578
 20.7.4 ROESY spectra 580
 20.7.5 ROESY and chemical exchange 582
 20.7.6 ROESY and TOCSY 583
20.8 Cross-correlated Relaxation 584
 20.8.1 Cross-correlation 584
 20.8.2 Cross-correlation of spin interactions 585
 20.8.3 Dipole-dipole cross-correlation and angular estimations 586
 20.8.4 TROSY 590
Part 8 Appendices

Appendix A: Supplementary Material

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1 Euler Angles and Frame Transformations</td>
<td>599</td>
</tr>
<tr>
<td>A.1.1 Definition of the Euler angles</td>
<td>599</td>
</tr>
<tr>
<td>A.1.2 Euler rotations: first scheme</td>
<td>599</td>
</tr>
<tr>
<td>A.1.3 Euler rotations: second scheme</td>
<td>600</td>
</tr>
<tr>
<td>A.1.4 Euler rotation matrices</td>
<td>601</td>
</tr>
<tr>
<td>A.1.5 Reference-frame orientations</td>
<td>601</td>
</tr>
<tr>
<td>A.1.6 Consecutive reference-frame transformations</td>
<td>602</td>
</tr>
<tr>
<td>A.1.7 Passive rotations</td>
<td>602</td>
</tr>
<tr>
<td>A.1.8 Tensor transformations</td>
<td>603</td>
</tr>
<tr>
<td>A.1.9 Intermediate reference frames</td>
<td>604</td>
</tr>
<tr>
<td>A.2 Rotations and Cyclic Commutation</td>
<td>604</td>
</tr>
<tr>
<td>A.3 Rotation Sandwiches</td>
<td>605</td>
</tr>
<tr>
<td>A.4 Spin-1/2 Rotation Operators</td>
<td>606</td>
</tr>
<tr>
<td>A.5 Quadrature Detection and Spin Coherences</td>
<td>608</td>
</tr>
<tr>
<td>A.6 Secular Approximation</td>
<td>611</td>
</tr>
<tr>
<td>A.7 Quadrupolar Interaction</td>
<td>614</td>
</tr>
<tr>
<td>A.7.1 Full quadrupolar interaction</td>
<td>614</td>
</tr>
<tr>
<td>A.7.2 First-order quadrupolar interaction</td>
<td>614</td>
</tr>
<tr>
<td>A.7.3 Higher-order quadrupolar interactions</td>
<td>615</td>
</tr>
<tr>
<td>A.8 Strong Coupling</td>
<td>615</td>
</tr>
<tr>
<td>A.8.1 Strongly-coupled Spin-1/2 pairs</td>
<td>615</td>
</tr>
<tr>
<td>A.8.2 General strongly coupled systems</td>
<td>620</td>
</tr>
<tr>
<td>A.9 J-Couplings and Magnetic Equivalence</td>
<td>621</td>
</tr>
<tr>
<td>A.10 Spin Echo Sandwiches</td>
<td>623</td>
</tr>
<tr>
<td>A.10.1 Short-duration limit</td>
<td>625</td>
</tr>
<tr>
<td>A.10.2 Long-duration limit</td>
<td>625</td>
</tr>
<tr>
<td>A.10.3 Two spin echo sequences</td>
<td>626</td>
</tr>
<tr>
<td>A.10.4 Heteronuclear spin echo sequences</td>
<td>627</td>
</tr>
<tr>
<td>A.11 Phase Cycling</td>
<td>629</td>
</tr>
<tr>
<td>A.11.1 Coherence transfer pathways</td>
<td>629</td>
</tr>
<tr>
<td>A.11.2 Coherence transfer amplitudes</td>
<td>630</td>
</tr>
<tr>
<td>A.11.3 Coherence orders and phase shifts</td>
<td>631</td>
</tr>
<tr>
<td>A.11.4 The pathway phase</td>
<td>632</td>
</tr>
<tr>
<td>A.11.5 A sum theorem</td>
<td>633</td>
</tr>
<tr>
<td>A.11.6 Pathway selection I</td>
<td>634</td>
</tr>
<tr>
<td>A.11.7 Pathway selection II</td>
<td>635</td>
</tr>
<tr>
<td>A.11.8 Pathway selection III</td>
<td>637</td>
</tr>
<tr>
<td>A.11.9 Selection of a single pathway I</td>
<td>638</td>
</tr>
<tr>
<td>A.11.10 Selection of a single pathway II</td>
<td>639</td>
</tr>
<tr>
<td>A.11.11 Dual pathway selection</td>
<td>640</td>
</tr>
<tr>
<td>A.11.12 Internal phases I</td>
<td>641</td>
</tr>
<tr>
<td>A.11.13 Internal phases II</td>
<td>642</td>
</tr>
<tr>
<td>A.11.14 Nested phase cycles I</td>
<td>644</td>
</tr>
<tr>
<td>A.11.15 Nested phase cycles II</td>
<td>645</td>
</tr>
<tr>
<td>A.11.16 Different ways of constructing phase cycles</td>
<td>648</td>
</tr>
</tbody>
</table>